Presentation of a new robotic arm neuronavigational device. Preliminary study in 4 pediatric surgical cases

Authors

DOI:

https://doi.org/10.59156/revista.v0i0.684

Keywords:

Approach, Neuronavigational, Robotic Arm, Software

Abstract

Background: in stereotactic and neuronavigational surgeries, 3D medical images of the human brain are used as a virtual map and a physical device that pinpoints anatomical structures in the real brain. Technological development has advanced from drawings and photographs of cadaveric brains to three-dimensional representations in surgical time and, in localization systems, from static mechanical devices to instantaneous dynamic visual and magnetic systems.

Objective: to present the initial experience of using a neuronavigational device with a robotic arm developed by the authors.

Device description: it is a physical three-dimensional localization system and the corresponding software, designed for use in neurosurgical interventions as a neuronavigational tool that acquires data from both Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). It delivers, with a frequency of 5/second, 3 position data of the marker tip (pencil) that corresponds to the values on the X axis with an accuracy of less than 0.12 mm, Y axis accuracy of less than 0.23 mm and, for the Z axis an accuracy of 0.14 mm. In addition, the same information includes the data of the 3 angles of rotation of the marker pencil vector.

Conclusion: the equipment tested in four cases was simple to use and effective for marking and tracing the approach routes to the target.

Downloads

Download data is not yet available.

References

Neil WDT, Sinclair J. Image-guided neurosurgery: history and current clinical applications. Review article. J Med Imaging Radiat Sci, 2015; 46(3): 331-42. Doi: 10.1016/j.jmir.2015.06.003. DOI: https://doi.org/10.1016/j.jmir.2015.06.003

Slavin KV. Neuronavigation in neurosurgery: current state of affairs. Expert Rev Med Devices, 2008; 5(1): 1-3. Doi: 10.1586/17434440.5.1.1. DOI: https://doi.org/10.1586/17434440.5.1.1

Rahman M, Murad G, Mocco J. Early history of the stereotactic apparatus in neurosurgery. Neurosurg Focus, 2009; 27(3): E12. Doi: 10.3171/2009.7.FOCUS09118. DOI: https://doi.org/10.3171/2009.7.FOCUS09118

Ajler P, Hernández D, Zaloff Dakoff J, Pietrani M, Baccanelli M, et al. Neuronavegación en neurocirugía. Rev Argent Neuroc, 2002; 16(3-4). Disponible en: https://aanc.org.ar/ranc/items/show/732.

Jaimovich R, Fidel Sosa F, Cuccia V, Zuccaro G. Neuroendoscopia guiada por Neuronavegación. Rev Argent Neuroc, 2007, 21(1). Disponible en: https://aanc.org.ar/ranc/items/show/475.

Hayhurts C, Byrne P, et al. Application of electromagnetic technology to neuronavigation: a revolution in image-guided neurosurgery. J Neurosurg, 2009; 111(6): 1179-84. Doi: 10.3171/2008.12.JNS08628. DOI: https://doi.org/10.3171/2008.12.JNS08628

Choi KY, Seo BR, Kim JH, Kim SH, Kim TS, Lee JK. The usefulness of electromagnetic neuronavigation in pediatric neuroendoscopic surgery. J Korean Neurosurg Soc, 2013; 53(3): 161-6. Doi: 10.3340/jkns.2013.53.3.161. DOI: https://doi.org/10.3340/jkns.2013.53.3.161

Clarkson, Chris & Vinicius, Lucio & Mirazon Lahr, Marta. (2006). Quantifying flake scar patterning on cores using 3D recording techniques. J Archaeol Sci, 2006; 33(1): 132-42. Doi: 10.1016/j.jas.2005.07.007. DOI: https://doi.org/10.1016/j.jas.2005.07.007

MicroScriber®. https://revware.net/wp-content/uploads/2022/03/MicroScribe-i-PLUS-Product-Sheet-Rev-B.pdf.

Stephen AJ, Wegscheider PK, Nelson AL, Dickey JP. Quantifying the precision and accuracy of the MicroScribe G2X three-dimensional digitizer, Digital Applications in Archaeology and Cultural Heritage, 2015; 2(1): 28-33. doi.org/10.1016/j.daach.2015.03.002. DOI: https://doi.org/10.1016/j.daach.2015.03.002

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C y cols. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging, 2012; 30(9): 1323-41. Doi: 10.1016/j.mri.2012.05.001. DOI: https://doi.org/10.1016/j.mri.2012.05.001

Beninca J, Zemma E, Lovey D, Vera L, Ibáñez M. Programa para la planificación de cirugías estereotácticas. NeuroTarget, 2017; 11(4): 37-40. Disponible en: https://neurotarget.com/index.php/nt/article/view/137. DOI: https://doi.org/10.47924/neurotarget2017137

Nikolaus Correl, et al. The Iterative Closest Point (ICP) original source: https://github.com/Introduction-to-Autonomous-Robots/Introduction-to-AutonomousRobots en Introduction to Autonomous Robots. Mechanisms, Sensors, Actuators, and Algorithms. 2022, 1.st Ed. MIT Press, Cambridge, MA.

Sedrak M, Alaminos-Bouza A L, Srivastava S. Coordinate systems for navigating stereotactic space: how not to get lost. Cureus, 2020; 12(6): e8578. Doi 10.7759/cureus.8578. DOI: https://doi.org/10.7759/cureus.8578

Pfisterer WK, Papadopoulos S, Drumm DA, Smith K, Preul MC. Fiducial versus non fiducial neuronavigation registration assessment and considerations of accuracy. Neurosurgery, 2008; 62(3 Suppl 1): 201-7; discussion 207-8. Doi: 10.1227/01.neu.0000317394.14303.99. DOI: https://doi.org/10.1227/01.neu.0000317394.14303.99

Published

2025-08-01

Issue

Section

Nota Técnica

How to Cite

[1]
Beninca, J. et al. 2025. Presentation of a new robotic arm neuronavigational device. Preliminary study in 4 pediatric surgical cases. Revista Argentina de Neurocirugía. (Aug. 2025). DOI:https://doi.org/10.59156/revista.v0i0.684.