Presentation of a new robotic arm neuronavigational device. Preliminary study in 4 pediatric surgical cases
DOI:
https://doi.org/10.59156/revista.v0i0.684Keywords:
Approach, Neuronavigational, Robotic Arm, SoftwareAbstract
Background: in stereotactic and neuronavigational surgeries, 3D medical images of the human brain are used as a virtual map and a physical device that pinpoints anatomical structures in the real brain. Technological development has advanced from drawings and photographs of cadaveric brains to three-dimensional representations in surgical time and, in localization systems, from static mechanical devices to instantaneous dynamic visual and magnetic systems.
Objective: to present the initial experience of using a neuronavigational device with a robotic arm developed by the authors.
Device description: it is a physical three-dimensional localization system and the corresponding software, designed for use in neurosurgical interventions as a neuronavigational tool that acquires data from both Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). It delivers, with a frequency of 5/second, 3 position data of the marker tip (pencil) that corresponds to the values on the X axis with an accuracy of less than 0.12 mm, Y axis accuracy of less than 0.23 mm and, for the Z axis an accuracy of 0.14 mm. In addition, the same information includes the data of the 3 angles of rotation of the marker pencil vector.
Conclusion: the equipment tested in four cases was simple to use and effective for marking and tracing the approach routes to the target.
Downloads
References
Neil WDT, Sinclair J. Image-guided neurosurgery: history and current clinical applications. Review article. J Med Imaging Radiat Sci, 2015; 46(3): 331-42. Doi: 10.1016/j.jmir.2015.06.003. DOI: https://doi.org/10.1016/j.jmir.2015.06.003
Slavin KV. Neuronavigation in neurosurgery: current state of affairs. Expert Rev Med Devices, 2008; 5(1): 1-3. Doi: 10.1586/17434440.5.1.1. DOI: https://doi.org/10.1586/17434440.5.1.1
Rahman M, Murad G, Mocco J. Early history of the stereotactic apparatus in neurosurgery. Neurosurg Focus, 2009; 27(3): E12. Doi: 10.3171/2009.7.FOCUS09118. DOI: https://doi.org/10.3171/2009.7.FOCUS09118
Ajler P, Hernández D, Zaloff Dakoff J, Pietrani M, Baccanelli M, et al. Neuronavegación en neurocirugía. Rev Argent Neuroc, 2002; 16(3-4). Disponible en: https://aanc.org.ar/ranc/items/show/732.
Jaimovich R, Fidel Sosa F, Cuccia V, Zuccaro G. Neuroendoscopia guiada por Neuronavegación. Rev Argent Neuroc, 2007, 21(1). Disponible en: https://aanc.org.ar/ranc/items/show/475.
Hayhurts C, Byrne P, et al. Application of electromagnetic technology to neuronavigation: a revolution in image-guided neurosurgery. J Neurosurg, 2009; 111(6): 1179-84. Doi: 10.3171/2008.12.JNS08628. DOI: https://doi.org/10.3171/2008.12.JNS08628
Choi KY, Seo BR, Kim JH, Kim SH, Kim TS, Lee JK. The usefulness of electromagnetic neuronavigation in pediatric neuroendoscopic surgery. J Korean Neurosurg Soc, 2013; 53(3): 161-6. Doi: 10.3340/jkns.2013.53.3.161. DOI: https://doi.org/10.3340/jkns.2013.53.3.161
Clarkson, Chris & Vinicius, Lucio & Mirazon Lahr, Marta. (2006). Quantifying flake scar patterning on cores using 3D recording techniques. J Archaeol Sci, 2006; 33(1): 132-42. Doi: 10.1016/j.jas.2005.07.007. DOI: https://doi.org/10.1016/j.jas.2005.07.007
MicroScriber®. https://revware.net/wp-content/uploads/2022/03/MicroScribe-i-PLUS-Product-Sheet-Rev-B.pdf.
Stephen AJ, Wegscheider PK, Nelson AL, Dickey JP. Quantifying the precision and accuracy of the MicroScribe G2X three-dimensional digitizer, Digital Applications in Archaeology and Cultural Heritage, 2015; 2(1): 28-33. doi.org/10.1016/j.daach.2015.03.002. DOI: https://doi.org/10.1016/j.daach.2015.03.002
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C y cols. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging, 2012; 30(9): 1323-41. Doi: 10.1016/j.mri.2012.05.001. DOI: https://doi.org/10.1016/j.mri.2012.05.001
Beninca J, Zemma E, Lovey D, Vera L, Ibáñez M. Programa para la planificación de cirugías estereotácticas. NeuroTarget, 2017; 11(4): 37-40. Disponible en: https://neurotarget.com/index.php/nt/article/view/137. DOI: https://doi.org/10.47924/neurotarget2017137
Nikolaus Correl, et al. The Iterative Closest Point (ICP) original source: https://github.com/Introduction-to-Autonomous-Robots/Introduction-to-AutonomousRobots en Introduction to Autonomous Robots. Mechanisms, Sensors, Actuators, and Algorithms. 2022, 1.st Ed. MIT Press, Cambridge, MA.
Sedrak M, Alaminos-Bouza A L, Srivastava S. Coordinate systems for navigating stereotactic space: how not to get lost. Cureus, 2020; 12(6): e8578. Doi 10.7759/cureus.8578. DOI: https://doi.org/10.7759/cureus.8578
Pfisterer WK, Papadopoulos S, Drumm DA, Smith K, Preul MC. Fiducial versus non fiducial neuronavigation registration assessment and considerations of accuracy. Neurosurgery, 2008; 62(3 Suppl 1): 201-7; discussion 207-8. Doi: 10.1227/01.neu.0000317394.14303.99. DOI: https://doi.org/10.1227/01.neu.0000317394.14303.99